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We consider a self consistent system of Bianchi type-I (BI) gravitational field and
a binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be
the one obeying the usual equation of state, i.e., p = ξε, with ζ ∈ [0, 1] whereas,
the dark energy is considered to be obeying a quintessence-like equation of state. The
modification of the ordinary quintessence lies in the fact that its pressure becomes
positive if the (dark) energy density exceeds some critical value. Exact solutions to the
corresponding Einstein equations are obtained. The model in consideration gives rise
to a Universe which is spatially finite. Depending on the choice of problem parameters
the Universe is either close with a space-time singularity, or an open one which is
oscillatory, regular and infinite in time.
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1. INTRODUCTION

The discovery that the expansion of the Universe is accelerating (Bachall
et al., 1999) has promoted the search for new types of matter that can behave
like a cosmological constant (Cladwell et al., 1998; Sahni and Starobinsky, 2000;
Zlatev et al., 1999a) by combining positive energy density and negative pressure.
This type of matter is often called quintessence. Zlatev et al. (1999b) showed that
“tracker field,” a form of quintessence, may explain the coincidence, adding new
motivation for the quintessence scenario.

An alternative model for the dark energy density was used by Kamenshchik
et al. (2001), where the authors suggested the use of some perfect fluid but
obeying “exotic” equation of state. This type of matter is known as Chaplygin
gas. In doing so the authors considered mainly a spatially flat, homogeneous and
isotropic Universe described by a Friedmann-Robertson-Walker (FRW) metric.
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The theoretical arguments and recent experimental data, which support the
existence of an anisotropic phase that approaches an isotropic one, lead to consider
the models of Universe with anisotropic back-ground. Since the modern-day
Universe is almost isotropic at large, its simplicity and evolution into a FRW
Universe makes the BI Universe a prime candidate for studying the possible effects
of an anisotropy in the early Universe on present-day observations. In a number of
papers, e.g., (Saha, 2001; Saha and Boyadjiev, 2004), we have studied the role of a
nonlinear spinor and/or a scalar fields in the formation of an anisotropic Universe
free from initial singularity. It was shown that for a suitable choice of nonlinearity
and the sign of � term the model in question allows regular solutions and the
Universe becomes isotropic in the process of evolution. Recently Khalatnikov and
Kamenshchik (2003) studied the Einstein equations for a BI Universe in the pres-
ence of dust, stiff matter and cosmological constant. In a recent paper (Saha, 2004a)
the author studied a self-consistent system of Bianchi type-I (BI) gravitational
field and a binary mixture of perfect fluid and dark energy given by a cosmological
constant. The perfect fluid in that paper was chosen to be the one obeying either the
usual equation of state, i.e., p = ζε, with ζ ∈ [0, 1] or a van der Waals equation
of state. That paper was followed by another, where we studied the evolution of an
initially anisotropic Universe given by a BI space-time and a bimnary mixture of a
perfect fluid obeying the equation of state p = ζε and a dark energy given by either
a quintessence or a Chaplygin gas (Saha, 2004b). It should be mentioned that the
inclusion of dark energy does not eliminate initial singularity of the model and the
space-time in those cases is everexpanding. Though at present the expansion of
the Universe with acceleration is supported by observations, there is no guarantee
that it will do so forever. Moreover, many physicists come to believe that the
present acceleration may be followed by a deceleration and the Universe may
even have a oscillatory mode of expansion. In order to obtain a singularity-free
Universe in the present paper we introduce a modified version of quintessence-like
dark energy, which at the same time is able to explain the accelerated expansion.

2. BASIC EQUATIONS

The gravitational field in our case is given by a Bianchi type I (BI) metric in
the form

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.1)

with the metric functions a, b, c being the functions of time t only.
The Einstein field equations for the BI space-time we write in the form
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ḃ

b
+ ḃ

b
+ ċ
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Here κ is the Einstein gravitational constant and over-dot means differentiation
with respect to t. The energy-momentum tensor of the source is given by

T ν
µ = (ε + p)uµuν − pδν

µ, (2.3)

where uµ is the flow vector satisfying

gµνu
µuν = 1. (2.4)

Here ε is the total energy density of a perfect fluid and/or dark energy density,
while p is the corresponding pressure, p and ε are related by an equation of state
which will be studied below in detail. In a co-moving system of coordinates from
(2.3) one finds

T 0
0 = ε, T 1

1 = T 2
2 = T 3

3 = −p. (2.5)

On account of (2.5) from (2.2a), (2.2b) and (2.2c), one finds(
ȧ
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τ
, (2.6a)
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τ
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where X1, X2, X3 are the integration constants and τ is a function of t defined to
be

τ = abc. (2.7)

The equations (2.6) imply that we have isotropic expansion in all directions as
τ → ∞ (Jacobs, 1968). A second integration of the system (2.6) gives

a

b
= D1 exp

[
X1

∫
dt

τ

]
, (2.8a)

b

c
= D2 exp

[
X2

∫
dt

τ

]
, (2.8b)
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c

a
= D3 exp

[
X3d

∫
dt

τ

]
, (2.8c)

with Di’s being the integration constants. It should be noted that the constants
Xi’s and Di’s obey the following relations:

D1D2D3 = 1, X1 + X2 + X3 = 0. (2.9)

Let us now express the metric functions in terms of τ explicitly. In view of
(2.9) from (2.8) one immediately finds (Saha, 2001)

a(t) = A1τ
1/3 exp

[
B1

∫
dt ′

τ (t ′)

]
, (2.10a)

b(t) = A2τ
1/3 exp

[
B2

∫
dt ′

τ (t ′)

]
, (2.10b)

c(t) = A3τ
1/3 exp

[
B3

∫
dt ′

τ (t ′)

]
, (2.10c)

where

A1 = 3
√

(D1/D3), A2 = 3

√
1/(D2

1D3), A3 = 3

√
(D1D

2
3),

B1 = X1 − X3, B2 = −(2X1 + X3), B3 = X1 + 2X3.

Thus the metric functions are completely defined in terms of volume-scale τ . Note
that the integrals in (2.8) and (2.10) are indefinite. To evaluate metric functions
at any given time t̃ we have to first integrate

∫
dt
τ

, and only then substitute t by t̃ .
As one sees, for τ (t) = tn with n > 1 the integral tends to zero as t → ∞, hence
the exponent tends to unity, as a result the initially anisotropic universe becomes
isotropic one.

Let us now define the equation for τ . Summation of (2.2a), (2.2b), (2.2c) and
3 times (2.2d) gives the equation for τ :

τ̈

τ
= 3κ

2
(ε − ρ), (2.11)

whereas, from the Bianchi identity Gν
µ:ν = 0 for ε we find

ε̇ = − τ̇

τ
(ε + p). (2.12)

After a little manipulations from (2.11) and (2.12) we find

τ̇ = ±
√

C1 + 3κετ 2, (2.13)

with C1 being an integration constant. Equation (2.12) can be rewritten in the form

ε̇

(ε + p)
= − τ̇

τ
. (2.14)
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Taking into account that the pressure and the energy density obey a equation of
state of type p = f (ε), we conclude that ε and p, hence the right hand side of the
Eq. (2.11) is a function of τ only, i.e.,

τ̈ = 3κ

2
(ε − p)τ ≡ F (τ ). (2.15)

From the mechanical point of view Eq. (2.15) can be interpreted as an equation
of motion of a single particle with unit mass under the force F (τ ). Then the
following first integral exists (Landau and Li fshitz, 1976):

τ̇ =
√

2[E − U (τ )]. (2.16)

Here E can be viewed as energy and U (τ ) is the potential of the force F.
Comparing the Eqs. (2.13) and (2.16) one finds E = C1/2 and

U (τ ) = −3

2
κετ 2. (2.17)

Finally, rearranging (2.13), we write the solution to the Eq. (2.11) in quadrature:
∫

dτ√
C1 + 3κετ 2

= t + t0, (2.18)

where the integration constant t0 can be taken to be zero, since it only gives a shift
in time.

In what follows we study the Eqs. (2.11) and (2.12) for perfect fluid and/or
dark energy for different equations of state obeyed by the source fields.

3. UNIVERSE AS A BINARY MIXTURE OF PERFECT FLUID
AND DARK ENERGY

In this section, we study the evolution of the BI Universe filled with perfect
fluid and dark energy in details. Taking into account that the energy density (ε)
and pressure (p) in this case comprise those of perfect fluid and dark energy, i.e.,

ε = εpf + εDE, p = ppf + pDE

the energy momentum tensor can be decomposed as

T ν
µ = (εDE + εpf + pDEppf)uµuν − (pDE + ppf)δ

ν
µ. (3.1)

In the above equation εDE is the dark energy density, pDE its pressure. We also
use the notations εpf and ppf to denote the energy density and the pressure of the
perfect fluid, respectively.
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In a comoving frame the conservation law of the energy momentum tensor
leads to the balance equation for the energy density

ε̇DE + ε̇pf = − τ̇

τ
(εDE + εpf + pDE + ppf). (3.2)

The dark energy is supposed to interact with itself only and it is minimally coupled
to the gravitational field. As a result the evolution equation for the energy density
decouples from that of the perfect fluid, and from Eq. (3.2), we obtain two balance
equations

ε̇DE + τ̇

τ
(εDE + pDE) = 0, (3.3a)

ε̇pf + τ̇

τ
(εpf + ppf) = 0. (3.3b)

4. EQUATIONS OF STATE

In order to complete the system of equations we need to specify two equations
of state for ppf and PDE.

4.1. Perfect Fluid

There are some equation of states that are commonly used that, although not
widely applicable, are obtained as a result of approximate estimates for particular
fluid. The barotropic equation of state

p1pf = ζεpf, (3.4)

is often assumed. Here ζ is a constant and lies in the interval ζ ∈ [0, 1]. Note that
0 ≤ ζ ≤ 1 is necessary for the existence of local mechanical stability and for the
speed of sound in the fluid to be no greater than the speed of light. Depending on
its numerical value, ζ describes the following types of Universes (Jacobs, 1968)

ζ = 0, (dust Universe), (3.5a)

ζ = 1/3, (radiation Universe), (3.5b)

ζ ∈ (1/3, 1), (hard Universe), (3.5c)

ζ = 1, (Zel’dovich Universe or stiff matter). (3.5d)

In view of the Eq. (3.4) from (3.3b) one easily finds laws of change of energy
density and pressure of a perfect fluid with the expansion of the Universe:

εpf = ε0/τ
(1+ζ ), ppf = ε0ζ/τ (1+ζ ), (3.6)
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where ε0 is the integration constants. In absence of the dark energy one immedi-
ately finds

τ = Ct2/(1+ζ ), (3.7)

with C being some integration constant. Let us now analyze this result to some
extent. Taking into account that

∫
dt

τ (t)
= 1

C

ζ + 1

ζ − 1
t (ζ−1)/(ζ+1),

for ζ < 1 one finds t (ζ−1)/(ζ+1) → 0 as t tends to infinity, i.e., the initially
anisotropic BI Universe in this case eventually becomes isotropic one. But this is
not the case if the BI Universe is filled with stiff matter with ζ = 1. Since for the
FRW Universe a(t) = b(t) = c(t), for the BI Universe to evolve into a FRW one
we should set D1 = D2 = D3 = 1. Moreover, the isotropic nature of the present
Universe leads to the fact that the three other constants Xi should be close to zero
as well, i.e., |Xi | � 1, (i = 1, 2, 3), so that Xi

C

ζ+1
ζ−1 t (ζ−1)/(ζ+1) → 0 even for a finite

interval of time.

4.2. Dark Energy

It was mentioned earlier that the dark energy can be given by a � term, a
quintessence or a Chaplygin gas. It was also mentioned that the quintessence was
constructed by combining positive energy density and negative pressure and obeys
the equation of state

Pq = wqεq, (3.8)

where the constant wq varies between −1 and zero, i.e., wq ∈ [−1, 0].
Here we introduce a modified model of quintessence when the dark energy

and the corresponding pressure obeys the following equation of state:

pDE = −w(εDE − εcr), (3.9)

where the constant w ∈ [0, 1). Here εcr some critical energy density. Setting εcr = 0
one obtains ordinary quintessence. It is well known that as the Universe expands
the (dark) energy density decreases. As a result, being a linear negative function of
energy density, the corresponding pressure begins to increase. In case of an ordi-
nary quintessence, the pressure is always negative, but for a modified quintessence
as soon as εq becomes less than the critical one, the pressure becomes positive.
In Fig. 1 we illustrate the evolution of pressure corresponding to ordinary and
modified quintessence with the expansion of the Universe.
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Fig. 1. Evolution of the pressure with the expansion of the BI Universe
when it is filled with perfect fluid and dark energy obeying ordinary and
modified quintessence given by (3.8) and (3.9), respectively. Here the letters
“o” and “m” stand for ordinary and modified, respectively.

In account of (3.9) from (3.3a) one finds the following relation between εDE

and τ :

εDE = 1

1 − w

[ ε1

τ 1−w
− wεcr

]
, (3.10)

with ε1 being some integration constant.

5. EXACT AND NUMERICAL SOLUTIONS

As soon as the right hand side of the Eq. (2.15) is defined, we can study
this equation in details. First we write the solution to the equation in question in
quadrature which will be followed by numerical results.

Inserting εpf and εq into (2.18) one now finds∫
dτ√

C1 + 3κ(ε0τ (1−τ ) + [ε1/(1 − w)]τ (1+w) − [wεcr/(1 − w)]τ 2)
= t + t0.

(3.11)
Here t0 is a constant of integration that can be taken to be trivial. As one sees,

the positivity of the radical imposes some restriction on the maximum value of
τ , i.e., in this case the model allows oscillatory mode of expansion. It means the
dark energy initially acts as a repulsive force resulting in accelerated expansion of
the Universe. But as soon as εDE becomes less than εcr the corresponding pressure
changes its direction and as a result the Universe begins to contract. In order to
give a complete picture, beside the system with a modified quintessence we study



Anisotropic Cosmological Models with Perfect Fluid and Dark Energy 991

Fig. 2. View of the potential when the BI Universe is filled with a binary
mixture of perfect fluid and a quintessence given by (3.8).

the system with an ordinary one as well. It should be noted that the critical energy
density εDE should be very small. Here for simplicity we set εcr = 0.01.

In Figs. 2 and 3 potentials corresponding to an ordinary and modified
quintessence are given. As one sees, the usual quintessence does not allow oscilla-
tory mode of expansion, Universe in this case expands endlessly. A corresponding
expansion of the Universe is given in Fig. 4. It should be emphasized that the
initially anisotropic Universe in this case evolves into an isotropic FRW one.

Fig. 3. View of the potential when the BI Universe is filled with a binary
mixture of perfect fluid and a modified quintessence-like dark energy given
by (3.9).
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Fig. 4. Evolution of the BI Universe filled with a binary mixture of perfect
fluid and a quintessence. For simplicity, as a perfect fluid we consider only
radiation.

As oppose to the ordinary quintessence a modified quintessence imposes some
restriction on the maximum value of τ . As a result the Universe initially ex-
pands, but after reaching some maximum it begins to contract. Depending on the
choice of the constant, which can be viewed as an energy level, it either shrinks
into a point [cf. Fig. 5] thus giving rise to space-time singularity, or begins to
expand again after reaching some non-zero minimum, i.e., the Universe in this
case experiences the oscillatory mode of expansion [cf. Fig. 6]. Note that to each
E corresponds a particular pair (τmin, τmax). It should be mentioned that an os-
cillatory mode of expansion was found by us previously (Saha and Boyadjiev,
2004) by means of a positive A term, where the sign of the cosmological constant
was predetermined. In case of the modified quintessence the pressure becomes
positive in the process of evolution that gives rise to the oscillatory mode of
expansion.

In Fig. 7 we illustrate the evolution of energy density and pressure when the
Universe is filled with a binary mixture of perfect fluid given by a radiation and
a modified quintessence. As one sees, the initial density is large enough and the
pressure is initially negative, with the energy density being less than εcr, pressure
becomes positive and the Universe begins to contract. As a result the energy
density begins to increase and pressure again becomes negative. This results in
the oscillatory mode of expansion.

Finally in Fig. 8 we plot the graphic of acceleration verses time. As one sees,
if the Universe is filled with perfect fluid only, the process of evolution decelerates
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Fig. 5. Evolution of the BI Universe with a modified quintessence. Choosing
E ≥ 0 (here we set E = 1 one obtains nonperiodic picture of evolution. As
one sees, different choice of ζ gives rise to different amplitude, but the
overall character of the solution remains unaltered.

with time, while the inclusion of an ordinary quintessence results in an accelerated
evolution. If the dark energy is given by a modified quintessence the accelerated
expansion is followed by a decelerated one.

Fig. 6. For E < 0 BI Universe filled with a binary mixture of perfect fluid
and quintessence-like dark energy admits oscillatory mode of expansion.
Here we set E = −1000 with τ0 = 50.
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Fig. 7. View of energy density and pressure when BI Universe experiences
oscillation as in Fig. 6.

6. DISCUSSION

A Bianchi type-I cosmological model filled with a binary mixture of perfect
fluid and dark energy is considered. As a dark energy we consider a modified
version of quintessence. The modification of the ordinary quintessence lies in the

Fig. 8. View of the acceleration for different source fields. Here “rad,” “quint” and “quint-
m” stand for radiation, a mixture of radiation and an ordinary quintessence and a mixture
of radiation and modified quintessence, respectively.



Anisotropic Cosmological Models with Perfect Fluid and Dark Energy 995

fact that its pressure becomes positive if the (dark) energy density exceeds some
critical value. The exact solutions to the corresponding field equations are found.
The inclusion of the dark energy into the system gives rise to an accelerated
expansion of the model. As a result τ approaches to infinity quicker than it
does when we the Universe is filled with perfect fluid alone. In case of ordinary
quintessence, following Jacobs (1968) we can conclude that the initial anisotropy
of the model dies away rather quickly. The modification of the quintessence results
in appearing some upper bound of the volume scale, i.e., in this case the Universe
is spatially finite. Depending on the choice of the integration constant E, which
can be viewed as an energy level, the Universe is either close with a space-time
singularity, or an open one which is oscillatory, regular and infinite in time. The
problem of isotropization in this case remains unclear. But if we suppose that the
critical energy density is so small that the model Universe can expand to the size as
big as the present one, when 1/τ can be virtually neglected, it will provide at least
the isotropic rate of expansion which is obvious from (2.6). But after reaching its
maximum the Universe begins to contract and τ begins to decrease. As a result
the anisotropy in the rate of expansion reappears.
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